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Outline

° The pi-calculus
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Syntax

@ Processes

P,Q == 0 P PIQ | P+Q
| =P (vz)P [x=y]P
@ Prefixes
T T | x(z) | X(2)
o = = =) E|= vae
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Syntax

@ Processes

P.Q 0 P PIQ | P+Q
| =P (vz)P [x=y]P
@ Prefixes
™ ou= 7 | x(z) | X(z)
@ Only names
o = =) E|= vae
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Late Labelled Semantics
INPUT

a(x).P

p 2z p/
0]
a(x) p PEN (I/Z)P (uz)az p’ z#a
p A%, a(x) p’ Q (vz)az Q,
CLOSE-L e F
PIQ = (vz) (P'{*A}IQ")

z&f

n(P)
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a Bisimulations
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Bisimulation

@ Proof techniques for showing process equivalence
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Bisimulation

@ Proof techniques for showing process equivalence
@ Wide variety of bisimulations: ground, early, late, open, ...
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Bisimulation

@ Proof techniques for showing process equivalence

@ Wide variety of bisimulations: ground, early, late, open, ...
@ The above cited differ on how they handle substitutions

@ For example, ground: no substitutions at all

P

|
Q
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Bisimulation

@ Proof techniques for showing process equivalence

@ Wide variety of bisimulations: ground, early, late, open, ...
@ The above cited differ on how they handle substitutions

@ For example, ground: no substitutions at all

«

P — P
|

Q
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Bisimulations

Bisimulation

@ Proof techniques for showing process equivalence

@ Wide variety of bisimulations: ground, early, late, open, ...
@ The above cited differ on how they handle substitutions

@ For example, ground: no substitutions at all

P = P
|
Q =

7139

Briais, Nestmann (EPFL) Open Bisimulation, Revisited



Bisimulations

Bisimulation

@ Proof techniques for showing process equivalence

@ Wide variety of bisimulations: ground, early, late, open, ...
@ The above cited differ on how they handle substitutions

@ For example, ground: no substitutions at all

P = P
|
Q = Q
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Bisimulations

Bisimulation

@ Proof techniques for showing process equivalence
@ Wide variety of bisimulations: ground, early, late, open, ...
@ The above cited differ on how they handle substitutions
@ For example, ground: no substitutions at all
P % P
| |
QI

e

Q

7139
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Substitutions

A substitution

@ has finite domain
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Substitutions

A substitution
@ has finite domain
@ replaces something (a name) by something (e.g.: a name)
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Substitutions

A substitution
@ has finite domain
@ replaces something (a name) by something (e.g.: a name)
@ can be lifted to bigger entities (e.g.: messages)
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Substitutions

A substitution
@ has finite domain
@ replaces something (a name) by something (e.g.: a name)
@ can be lifted to bigger entities (e.g.: messages)
Some questions when designing a bisimulation:
@ When should substitutions be applied?
@ Which names are substitutable?
@ By what?
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Early and late bisimulation

@ The symmetric relation R C P x P is
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Early and late bisimulation

@ The symmetric relation R C P x P is
» an early bisimulation if for all (P, Q) € R, if P < P’ then
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Early and late bisimulation

@ The symmetric relation R C P x P is

» an early bisimulation if for all (P,Q) € R, if P = P’ then
i) if a is not an input,
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Early and late bisimulation

@ The symmetric relation R C P x P is

» an early bisimulation if for all (P,Q) € R, if P = P’ then
i) if a is not an input,
there exists Q' such that Q = Q' and P'R Q’
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Early and late bisimulation

@ The symmetric relation R C P x P is

» an early bisimulation if for all (P,Q) € R, if P = P’ then
i) if a is not an input,
there exists Q' such that Q = Q' and P'R Q’
i) if a =a(x),
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Early and late bisimulation

@ The symmetric relation R C P x P is
» an early bisimulation if for all (P, Q) € R, if P < P’ then
i) if a is not an input,
there exists Q' such that Q = Q’ and P'R Q’
i) if a =a(x),
then for all u € V, there exists Q’ such that Q = Q’ and

(P{A1LQKN eR
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Early and late bisimulation

@ The symmetric relation R C P x P is
» an early bisimulation if for all (P, Q) € R, if P < P’ then
i) if a is not an input,
there exists Q' such that Q = Q’ and P'R Q’
i) if a =a(x),
then for all u € V, there exists Q’ such that Q = Q’ and
(P {4}, Q{"A) eR

» a late bisimulation if instead of ii), it satisfies
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Early and late bisimulation

@ The symmetric relation R C P x P is

» an early bisimulation if for all (P,Q) € R, if P = P’ then
i) if a is not an input,
there exists Q' such that Q = Q’ and P'R Q’
i) if a =a(x),
then for all u € A/, there exists Q' such that Q % Q' and
(P {4}, Q{"A) eR
» a late bisimulation if instead of ii), it satisfies
i") if a = a(x),
then there exists Q’ such that Q % Q' and for allu € N,

(P{ALQAN ER
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From late to open
@ Late bisimulation
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From late to open
@ Late bisimulation

p 2, pr
|
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From late to open

@ Late bisimulation

u]
i}

I
ul
it
"
S
el
]

Briais, Nestmann (EPFL) Open Bisimulation, Revisited



From late to open

@ Late bisimulation

p a(x) p/

Q M o
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From late to open

@ Late bisimulation

P2 e Py
| |
Q X o Qg

u]
i}

I
ul
it
"
S
el
]

Briais, Nestmann (EPFL) Open Bisimulation, Revisited



From late to open

@ Late bisimulation

P P

P
| |
Q X o Qg

@ Open bisimulation
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From late to open

@ Late bisimulation

P2 e Py
| |
Q Qi

@ Open bisimulation
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From late to open

@ Late bisimulation

P2 e Py
| |
Q Qi

@ Open bisimulation
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From late to open

@ Late bisimulation

P2 e Py
| |
Q Qi

@ Open bisimulation
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From late to open

@ Late bisimulation

P2 e Py
| |
Q Qi

@ Open bisimulation
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Bisimulations

From late to open

@ Late bisimulation
||3 a(X) P/ P,{|Z/X}
Q M o Qs

@ Open bisimulation
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Bisimulations

From late to open

@ Late bisimulation
||3 a(X) P/ P,{|Z/X}
Q M o Qs

@ Open bisimulation
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Bisimulations

From late to open

@ Late bisimulation
P2 e Py

\
Q ¥ o Qe

@ Open bisimulation

o>D | |

Q Q = Q

Indexed by a distinction D.
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Distinctions

@ A distinction D is an irreflexive and symmetric relation between
names (finite list of inequalities)
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@ A distinction D is an irreflexive and symmetric relation between
names (finite list of inequalities)

@ A substitution o respects D (o > D) if xo # yo for all (x,y) € D.
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Distinctions

@ A distinction D is an irreflexive and symmetric relation between
names (finite list of inequalities)

@ A substitution o respects D (o > D) if xo # yo for all (x,y) € D.
@ If o> D, we define the updated distinction Do.
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Distinctions

@ A distinction D is an irreflexive and symmetric relation between
names (finite list of inequalities)
@ A substitution o respects D (o > D) if xo # yo for all (x,y) € D.
@ If o> D, we define the updated distinction Do.
@ For example, if D = {(X,Y), (X,z),(y,x),(z,x)} then
» X — U respects D and
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Distinctions

@ A distinction D is an irreflexive and symmetric relation between
names (finite list of inequalities)
@ A substitution o respects D (o > D) if xo # yo for all (x,y) € D.
@ If o> D, we define the updated distinction Do.
@ For example, if D = {(X,Y), (X,z),(y,x),(z,x)} then
» X — U respects D and the updated distinction is

{(u,y), (u,2), (y,u), (z,u)}

Briais, Nestmann (EPFL) Open Bisimulation, Revisited 11/39



Distinctions

@ A distinction D is an irreflexive and symmetric relation between
names (finite list of inequalities)
@ A substitution o respects D (o > D) if xo # yo for all (x,y) € D.
@ If o> D, we define the updated distinction Do.
@ For example, if D = {(X,Y), (X,z),(y,x),(z,x)} then
» X — U respects D and the updated distinction is

{(u,y), (u,2), (y,u), (z,u)}

» On the contrary, X — u,y — u does not respect D
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that for all (D,P,Q) € R and o > D, if Po % P’ then
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Open Bisimulation
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that for all (D,P,Q) € R and o > D, if Po % P’ then
Qo % Q' and
» if a is not a bound output, then (Do, P’,Q’) e R
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that for all (D,P,Q) € R and o > D, if Po % P’ then
Qo % Q' and
» if a is not a bound output, then (Do, P’,Q’) e R
» otherwise, if « = (vz)az, then
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that for all (D,P,Q) € R and o > D, if Po % P’ then
Qo % Q' and
» if a is not a bound output, then (Do, P’,Q’) e R
» otherwise, if « = (vz)az, then (D’,P’,Q’) € R where
D’ = Do
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that for all (D,P,Q) € R and o > D, if Po % P’ then
Qo % Q' and
» if a is not a bound output, then (Do, P’,Q’) e R
» otherwise, if « = (vz)az, then (D’,P’,Q’) € R where
D'=DoU{z} ® (fn((P + Q)o))
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Open Bisimulation

@ An open bisimulation is a “symmetric” relation R C D x P x P
such that for all (D,P,Q) € R and o > D, if Po % P’ then
Qo % Q' and
» if a is not a bound output, then (Do, P’,Q’) e R
» otherwise, if « = (vz)az, then (D’,P’,Q’) € R where
D'=DoU{z} ® (fn((P + Q)o))

@ Distinctions are used to forbid the fusing of fresh names with other
names
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Bisimulations

The lazy flavour of open

P = c(x).(r+77+7.[x=2a]r)
Q def c(x).(t +7.7)

"
N
el
2
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The lazy flavour of open

P = c(x).(r+77+7.[x=2a]r)
c(X).(tr+ 71.7)

@ P and Q are late bisimilar but not open
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The lazy flavour of open

P = c(x).(r+77+7.[x=2a]r)
c(X).(tr+ 71.7)

@ P and Q are late bisimilar but not open
@ In open, the instantiation of x can be delayed until x is used
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Some properties of open
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Some properties of open

@ Contrary to early or late, it is a full congruence
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Some properties of open

@ Contrary to early or late, it is a full congruence
@ More precisely, open D-bisimilarity is a D-congruence
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Some properties of open

@ Contrary to early or late, it is a full congruence
@ More precisely, open D-bisimilarity is a D-congruence
@ It is easily implementable (Mobility Workbench, ABC)
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Some properties of open

@ Contrary to early or late, it is a full congruence
@ More precisely, open D-bisimilarity is a D-congruence
@ It is easily implementable (Mobility Workbench, ABC)

For these reasons, we wanted to extend open to the spi-calculus.
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Outline

e The spi-calculus
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The spi-calculus
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The spi-calculus

@ To model and study cryptographic protocols.
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The spi-calculus

@ To model and study cryptographic protocols.
@ Messages

M,N == x | (M.N) | En(M)
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The spi-calculus

@ To model and study cryptographic protocols.
@ Messages

M,N == x | (M.N) | En(M)

@ Expressions

E.F = X
(E.F) m1(E) | m(E)
Er(E) Dr(E)
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The spi-calculus

@ To model and study cryptographic protocols.
@ Messages

M,N == x | (M.N) | En(M)

@ Expressions

E.F = X
(E.F) m1(E) | m(E)
Er(E) Dr(E)
@ Guards
¢ == [E=F] | [E:N]
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Evaluation of expressions and formulae

o] < a
[Ec(E)] &' Exy(M) if[E]=M e Mand[F] =N e M
[De(E)] %' wm if [E] = Ex(M) e M and [F]=N € M
IE] ® in all other cases
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Evaluation of expressions and formulae

[a] = a
[Ec(E)] &' Exy(M) if[E]=M e Mand[F] =N e M
[De(E)] %' wm if [E] = Ex(M) e M and [F]=N € M
IE] ® in all other cases

[tt] %" true

[6Anv] % [6] and [v]
[E=F]] £ true if [E] = [F] =M € M
E:NT] £ true if [E] =ac A\
[2] % false in all other cases
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The spi-calculus

The wide-mouthed frog protocol
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The spi-calculus

The wide-mouthed frog protocol

© A—S:(A.E((B-kas)))
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The spi-calculus

The wide-mouthed frog protocol

()
®/ \

© A—S:(A.E((B-kas)))
Q@ S — B :E(((A.B) kag))
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The spi-calculus

The wide-mouthed frog protocol

o O
o A—S: (A EkAS((B kAB)))

@ S — B :E(((A.B).kng))
QO A—~B: EkAB(m)
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. In spi-calculus

(vKas Kes)
(vkas) S{(A.Ek,s((B-kag))))-B(Ek,(m)).0
[B(X1)-¢1B(x2).920

|S(%0)-¢0B (Ekgs (((A - B) - m2(Diy (2(%0))))))- O

Briais, Nestmann (EPFL) Open Bisimulation, Revisited 19/39



.. In spi-calculus

(vKas. Kss)

(vkag) S{(A. Exys (B . Kag))))-B(Exye (M)). 0

[B(X1)-01B(%2).02 0
s(

$1B(x
IS(*0)-¢ §< ((A.B) . m2(Dxys (m2(%0))))))- 0

[B=1(Dyyg (m2(X0))) ] A[A=m1(X0)]
[B =1 (m2(Dkgs (X1))) ] A [A=m1(Digs (X1)) ]
[Dry (52 (D1 (x2))) (X2) : M

o
¢1
®2
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Open in spi?
@ Consider
def

P = (vk) (vm)a(Ex(m)).a(x).(alk)[[x =k]a(a))
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Open in spi?
@ Consider
def

@ The guard [x =k ] can never be true.

P = (vk) (vm)a(Ex(m)).a(x).(alk)[[x =k]afa))
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Open in spi?

@ Consider

P % (uk) (vm) a(Ex () a(x).@(k)|[x =k ]a(a)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).
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Open in spi?

@ Consider

P & (vk) (vm) &(E (m))-a(x). (@(K)l[x =K ]&(@)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).
@ What are the possible values for x?
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Open in spi?

@ Consider

P& (vk) (vm) &(E (m))-a(x). (@(K)l[x =K ]&(@)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).

@ What are the possible values for x?
a
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Open in spi?

@ Consider

P& (vk) (vm) &(E (m))-a(x). (@(K)l[x =K ]&(@)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).

@ What are the possible values for x?
a, z for any z fresh
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Open in spi?

@ Consider

P& (vk) (vm) &(E (m))-a(x). (@(K)l[x =K ]&(@)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).

@ What are the possible values for x?
a, z for any z fresh(not in {k,m,a})
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Open in spi?

@ Consider

P& (vk) (vm) &(E (m))-a(x). (@(K)l[x =K ]&(@)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).

@ What are the possible values for x?
a, z for any z fresh(not in {k, m,a}), Ex(m)
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Open in spi?

@ Consider

P& (vk) (vm) &(E (m))-a(x). (@(K)l[x =K ]&(@)

@ The guard [x =k ] can never be true.
@ The name k has been extruded when performing a Ex(m).

@ What are the possible values for x?
a, z for any z fresh(not in {k, m,a}), Ex(m)
and any message built with these “bricks”
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@ Bisimulations of w-calculus are two strong

P(m) def

= (vk)a(Ex(m))
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Bisimulations in spi

@ Bisimulations of w-calculus are two strong

P(m) &' (vk)a(Ex(m))

For any m and n, we want P(m) and P(n) equivalent.
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Bisimulations in spi

@ Bisimulations of w-calculus are two strong
def -
P(m) = (vk)a(Ex(m))

For any m and n, we want P(m) and P(n) equivalent.

@ Abadi and Gordon have introduced environment-sensitive
bisimulation.
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Outline

° K-open bisimulation
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Different kinds of free names
P 2 a(x).(
A free name is

k) B(k).X(k).0
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Different kinds of free names
P L a(x).(
A free name is
@ either initially free

k) B(k).X(k).0
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Different kinds of free names
P L a(x).(
A free name is
@ either initially free

k) B(k).X(k).0

@ or becomes free after an input
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Different kinds of free names

P 2" a(x).(vk) b(k).X(k).0

A free name is
@ either initially free
@ or becomes free after an input
@ or becomes free by scope extrusion
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Different kinds of free names

P 2" a(x).(vk) b(k).X (k). 0

A free name is
@ either initially free
@ or becomes free after an input
@ or becomes free by scope extrusion

@ The first two kinds are substitutable:
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Different kinds of free names

P 2" a(x).(vk) b(k).X (k). 0

A free name is
@ either initially free
@ or becomes free after an input
@ or becomes free by scope extrusion

@ The first two kinds are substitutable:
» by any name that was known at the moment they became free or
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Different kinds of free names

P 2" a(x).(vk) b(k).X (k). 0

A free name is
@ either initially free
@ or becomes free after an input
@ or becomes free by scope extrusion

@ The first two kinds are substitutable:

» by any name that was known at the moment they became free or
» any fresh name.

Briais, Nestmann (EPFL) Open Bisimulation, Revisited 23/39



Refining distinctions

@ A distinction is a finite list of inequalities between names.
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Refining distinctions

@ A distinction is a finite list of inequalities between names.
@ We take a dual approach for constraining admissible substitutions.
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Refining distinctions

@ A distinction is a finite list of inequalities between names.

@ We take a dual approach for constraining admissible substitutions.
ee=(C,V,=<)
» C contains the emitted names (or messages) not in V
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Refining distinctions

@ A distinction is a finite list of inequalities between names.
@ We take a dual approach for constraining admissible substitutions.
ee=(CV,<)

» C contains the emitted names (or messages) not in V

» V contains the input names and the initially free ones
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K-open bisimulation

Refining distinctions

@ A distinction is a finite list of inequalities between names.
@ We take a dual approach for constraining admissible substitutions.

ee=(C\V,<)
» C contains the emitted names (or messages) not in V

» V contains the input names and the initially free ones
» < indicates for each x € V which names in C were known before

24/39
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Environments
def

P = (vk)a(k).a(x).((v) b{h)|[x=k]a(a))
C
0

\Y,

{a,b}

<
0
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_ Kopenbisimulaion [
Environments

P €' (wk)a(k).a(x).(v) b(l)|[x =k Ja(a))

C \% <

0 {a,b} 0

{k} | {a/b} 0
D=k£ak#b

u]
i}

I
ul
it
"
S
el
]
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_ Kopenbisimulaion [
Environments

P €' (wk)a(k).a(x).(v) b |[x =k Ja(a))

C \% <
0 {a,b} 0
{k} | {a,b} 0
{k} |{ab,x}|{(k,x)}

D=k#ak#b

u]
i}

I
ul
it
"
S
el
]
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_ Kopenbisimulaion [
Environments

def -

P = (vk)alk).alx).((W)bh][x =klaf@))

C \% <
0 {a,b} 0
{k} | {a,b} 0
{k} |{ab,x}|{(k,x)}

D=k#ak#b

u]
i}

I
ul
it
"
S
el
]
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_ Kopenbisimulaion [
Environments

P & (k) alk).a(x).(W) b()|[x —]a(a))

C \% <
0 {a,b} 0
{k} | {a,b} 0
{k} |{ab,x}|{(k,x)}

D=k#ak#b

u]
i}

I
ul
it
"
S
el
]
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Environments

def e

P = (vk)alk).alx).((W)bh[x=k]a(a))

C \% <
0 {a,b} 0
{k} | {a,b} 0

{k} | {a,b,x} | {(k,x)}
{k,1} | {a,b,x} | {(k;x)}

D=k#£ak#£bl£al#£bl#£xk#I

=} = = = == DA
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_ Kopenbisimulaion [
Environments

def i

P = (vk)alk).alx).((W)bh][x=klaf@))

C \% <
0 {a,b} 0
{k} | {a,b} 0

{k} | {a,b,x} | {(k,x)}
{k,1} | {a,b,x} | {(k;x)}

D=k#£ak#£bl£al#£bl#£xk#I

=} = = = == DA
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Environments

P &' (vk) alk).a(x).((4) bl | [x ~ | a(a))

C \% <
0 {a,b} 0
{k} | {a,b} 0

{k} | {a,b,x} | {(k,x)}
{k,1} | {a,b,x} | {(k;x)}

D=k#£ak#£bl£al#£bl#£xk#I

=} = = = == DA
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Environments

def i

P = (vk)alk).alx).((W)bh[x=k]a(a))

C \% <
0 {a,b} 0
{k} | {a,b} 0

{k} | {a,b,x} | {(k,x)}
{k,1} | {a,b,x} | {(k;x)}

D=k#£ak#£bl£al#£bl#£xk#I

=} = = = == DA
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Refining distinctions

@ A distinction is a finite list of inequalities between names.

@ We take a dual approach for constraining admissible substitutions.
ee=(C,V,x)
» C contains the emitted names (or messages) not in V

» V contains the input names and the initially free ones
» < indicates for each x € V which names in C were known before

@ A substitution o respects e if
supp(o) C V and o does not “contradict” <
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Refining distinctions

@ A distinction is a finite list of inequalities between names.
@ We take a dual approach for constraining admissible substitutions.
ee=(C\V,<)

» C contains the emitted names (or messages) not in V

» V contains the input names and the initially free ones
» < indicates for each x € V which names in C were known before

@ A substitution o respects e if
supp(o) C V and o does not “contradict” <

@ The corresponding distinction is

def

D(C,V,<) = C7U{n#x|neCA-(n=<x)}
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Some results

We have
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Some results
We have
o

P N(C$Va<) Q = P Ng(cvva<) Q
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Some results
We have
o

P N(C$Va<) Q = P Ng(cvva<) Q

= Ng(c,v,<) Q=P Nf(c,v,<) Q
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Some results

We have
)
) Nl((C,V,<) Q=P Ng(c,v,<) Q
)

= Ng(c,v,<) Q=P Nf(c,v,<) Q

@ In particular
0,in(P+Q),0

u]
i}

I
ul
it
"
S
el
]
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Some results

We have

(*]
) (KCV<Q:>P (CV<)Q

= D(CV<)Q:>P cv<)Q

@ In particular
0,in(P+Q),0

@ if e is an environment, then open D(e)-bisimilarity is an
e-congruence
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Outline

e Open hedged bisimulation
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The intruder knowledge (1/2)

@ A hedge h is a finite set of pairs of message

u]
i}

I
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"
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The intruder knowledge (1/2)

@ A hedge h is a finite set of pairs of message
@ The synthesis S(h) is the smallest set that contains h and satisfies

(M,N) e S(h)  (K,L) € S(h)
(Ek (M), EL(N)) € S(h)

(SYN-ENC)
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The intruder knowledge (1/2)

@ A hedge h is a finite set of pairs of message
@ The synthesis S(h) is the smallest set that contains h and satisfies

(M,N) e S(h)  (K,L) € S(h)
(Ek (M), EL(N)) € S(h)

(SYN-ENC)

@ For example, if h = {(a,a), (k,k)}, we have (Ex(a),Ex(a)) € S(h)
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The intruder knowledge (1/2)

@ A hedge h is a finite set of pairs of message
@ The synthesis S(h) is the smallest set that contains h and satisfies

(M,N) e S(h)  (K,L) € S(h)
(Ek (M), EL(N)) € S(h)

(SYN-ENC)

@ For example, if h = {(a,a), (k,k)}, we have (Ex(a),Ex(a)) € S(h)
@ In general, S(h) is not a hedge since it is not finite.
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The intruder knowledge (2/2)

@ The analysis A(h) is the smallest hedge that contains h and
satisfies

(Ek(M),EL(N)) € A(h)  (K,L) e S(A(h))

(ANA-DEC) (M.N) € A(h)
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The intruder knowledge (2/2)

@ The analysis A(h) is the smallest hedge that contains h and
satisfies

(Ex(M),EL(N)) € A(h)  (K,L) € S(A(h))
(ANA-DEC)

(M,N) € A(h)

@ For example, if h = {(k,k), (Ex(a), Ex(a))}, we have
A(h) = {(k,k), (Ex(a),Ex(a)), (a,a)}.
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The intruder knowledge (2/2)

@ The analysis A(h) is the smallest hedge that contains h and
satisfies

(Ek(M),EL(N)) € A(h) (K, L) € S(A(h))

(ANA-DEC) (M.N) € A(h)

@ For example, if h = {(k,k), (Ex(a), Ex(a))}, we have
A(h) = {(k,k), (Ex(a),Ex(a)), (a,a)}.
@ The irreducibles Z(h) is a “minimal” hedge “equivalent” to A(h)
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Late hedged bisimulation

@ A “symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
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Late hedged bisimulation

@ A “symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,

» his consistent
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,

» his consistent
> ifP % P’
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> ifP % P’
Qifa=r,
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> ifP % P thenQ 2 @’ and
Qifa=r,
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> ifP % P thenQ 2 @’ and
@ ifa=7theng=rand (h,P',Q)cR
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,

» his consistent

> ifP 2 p thenQ 2 @’ and
Q@ ifa=rtheng=rand (h,P',Q)cR
Q ifa=a(x),
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P 2 P’ and ch(a) € m(h) then Q & Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
Q ifa=a(x),
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P 2 P’ and ch(a) € m(h) then Q & Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
@ ifa = a(x), then 3 = b(x) and
(a,b) € S(h)
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P 2 P’ and ch(a) € m(h) then Q & Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
@ ifa = a(x), then 3 = b(x) and
(a,b) € S(h)

forall(M,N)eSth ), (h P {"i},Q{"k}) eR
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P % P’ and ch(a) € m1(h) then Q 2 Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
@ ifa = a(x), then 3 = b(x) and
(a,b) € S(h)
for all B ¢ N x A consistent (and minimal, and fresh)
forall (M,N) € S(huUB), (hUB,P'{"4},Q"{Nk}) e R
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P % P’ and ch(a) € m1(h) then Q 2 Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
@ ifa = a(x), then 3 = b(x) and
(a,b) € S(h)
for all B ¢ N x A consistent (and minimal, and fresh)
forall (M,N) € S(huUB), (hUB,P'{"4},Q"{Nk}) e R
@ ifa=(v€)am,
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P 2 P’ and ch(a) € m(h) then Q & Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
@ ifa = a(x), then 3 = b(x) and
(a,b) € S(h)
for all B ¢ N x A consistent (and minimal, and fresh)
forall (M,N) € S(huB), (hUB,P'{M4x},Q"{"A}) e R
@ ifa = (v&)aM, then 3= (vd)bN and
(a,b) € S(h)
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Late hedged bisimulation

@ A‘“symmetric” relation R C ‘H x P x P is a late hedged
bisimulation if for all (h,P,Q) € R,
» his consistent
> if P 2 P’ and ch(a) € m(h) then Q & Q' and
Q@ ifa=rtheng=rand (h,P',Q)cR
@ ifa = a(x), then 3 = b(x) and
(a,b) € S(h)
for all B ¢ N x A consistent (and minimal, and fresh)
forall (M,N) € S(huB), (hUB,P'{M4x},Q"{"A}) e R
@ ifa = (v&)aM, then 3= (vd)bN and
(a,b) € S(h)
(Z(hu{(M,;N)}),P", Q") e R
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@ An environment is now composed of
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@ An environment is now composed of

» a hedge h: the emitted messages messages
» a finite set of pair of names v: the input names
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From late to open hedged

@ An environment is now composed of
» a hedge h: the emitted messages messages
» a finite set of pair of names v: the input names
» <: precedence relation to indicate which part of h was available (for
each input)
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From late to open hedged

@ An environment is now composed of
» a hedge h: the emitted messages messages
» a finite set of pair of names v: the input names
» <: precedence relation to indicate which part of h was available (for
each input)
» two sets of names (v, ): type constraints for input names
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Environments
def

hz

P = (vk) (vm)a(Ex(m)).a(x).@k)|[x =k]a(a))
0

1
V2

{a}

}\\

M

0
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Environments

P % (vk) (vm) a(Ex(m)) a(x).(@(k)[x =k a(a))
h% v% -<% N
0 {a} 0 0
[E(m)] | {a} [BERECY
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Open hedged bisimulation

Environments

P %' (1) (vm) & E, (m)).a(x).(&(K) |[x =k [a(a))
h% V% -<% N
0 {a) 0 /
Em)] | {a) U ECY
{Em)} [ {ax} [Edm) <x]{a}
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Open hedged bisimulation

Environments

P 2 (k) (vm) A(Ex (M) 2(x). @(K) |[x =k Ja(a))
h% V% -<% N
0 {a} [ 0
Em} | {a) U REY;
{Em)} [ {ax} [Edm) <x]{a}
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Open hedged bisimulation

Environments

P % (vk) (vm) a(Ex(m)).a(x).(alk)|[x —k [a(a))
hi v <4 N
U {a} 0 0
[Em)) | {a) 0 {a]
{(E(m)}  [{a.x} |E(m) <x|{a}
{Ex(m),k,m} | {a,x} | Ex(m) <x | {a}

[m]

= = = == DA
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Open hedged bisimulation

Environments

P &' (vk) (vm) a(Ex(m)).a(x).(alk)|[x =k]a(a))
hi v <4 N
U {a} 0 0
[Em)) | {a) 0 {a]
{(E(m)}  [{a.x} |E(m) <x|{a}
{Ex(m),k,m} | {a,x} | Ex(m) <x | {a}

[m]

= = = == DA
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From late to open hedged

@ An environment is now composed of

» a hedge h: the emitted messages messages
» a finite set of pair of names v: the input names
» <: precedence relation to indicate which part of h was available (for

each input)
» two sets of names (v, ): type constraints for input names
@ Moreover, we define
» the sets of pair of respectful substitutions (o, p)
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each input)
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From late to open hedged

@ An environment is now composed of

» a hedge h: the emitted messages messages
» a finite set of pair of names v: the input names
» <: precedence relation to indicate which part of h was available (for
each input)
» two sets of names (v, ): type constraints for input names
@ Moreover, we define
» the sets of pair of respectful substitutions (o, p)
» the consistency of an environment
» the updating of an environment

@ ... and we finally define the bisimulation.
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From late to open hedged

@ An environment is now composed of
» a hedge h: the emitted messages messages
» a finite set of pair of names v: the input names
» <: precedence relation to indicate which part of h was available (for
each input)
» two sets of names (v, ): type constraints for input names
@ Moreover, we define

» the sets of pair of respectful substitutions (o, p)
» the consistency of an environment
» the updating of an environment

@ ... and we finally define the bisimulation.
@ The definition obtained is sound.
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Conclusion

@ Definition of K-open bisimulation

» Coincides with open bisimulation
» Defined of bigger set of contexts that preserves open

@ Open hedged bisimulation
» Sound w.r.t. late hedged bisimulation
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Future work

@ Study open hedged bisimulation
» Link with symbolic bisimulation of [BBNO4]

u]
i}

I
ul
it
"
S
el
]

Briais, Nestmann (EPFL) Open Bisimulation, Revisited



Future work

@ Study open hedged bisimulation

» Link with symbolic bisimulation of [BBNO4]
» Congruence properties?
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Thank you!
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Thank you!
Questions?
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e-respectful contexts

Ife = (0,V, <), acontext C[-] respects e if it is generated by
Cnl]l == [] ifN=20
P|Cn[]|CnIIP
P —i—CN['HCN['] +P
'Cn[]
$Cn[]
(vx) Cny g [
a(z).Cnl[]
a(x).Cn[] ifx ZOUV
a(x).Cnun'[] ifxeVand N ={neO|-n=<x}

with N C O and Cy[-] as start symbol.
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