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Abstract. The spi calculus is an executable model for the description
and analysis of cryptographic protocols. Security objectives like secrecy
and authenticity can be formulated as equations between spi calculus
terms, where equality is interpreted as a contextual equivalence.

One problem with verifying contextual equivalences for message-passing
process calculi is the infinite branching on process input. In this paper,
we propose a general symbolic semantics for the spi calculus, where an
input prefix gives rise to only one transition.

To avoid infinite quantification over contexts, non-contextual concrete
bisimulations approximating barbed equivalence have been defined. We
propose a symbolic bisimulation that is sound with respect to barbed
equivalence, and brings us closer to automated bisimulation checks.

1 Background, Related Work, and Summary

Verification of Cryptographic Protocols in the Spi Calculus. Abadi and Gordon
designed the spi calculus as an extension of the pi calculus with encryption prim-
itives in order to describe and formally analyze cryptographic protocols [AG99].
The success of the spi calculus is due to at least three reasons. (1) It is equipped
with an operational semantics; thus any protocol described in the calculus may be
regarded as executable. (2) Security properties can be formulated as equations
on process terms, so no external formalism is needed. (3) Contextual equiva-
lences on process terms avoid the need to explicitly model the attacker; they
take into account any attacker that can be expressed in the calculus.

For example, we may wish to analyze the trivial cryptographic protocol
(vk)(A|B) where A:=a(Eym) and B :=a(x).f(Dyz)
consisting of participant A sending on channel a the message m, encrypted under
the secret shared symmetric key k, to participant B who tries to decrypt the
received message and, in case of successful decryption, outputs the result on

channel f. We may compare this protocol with its specification

(vk) (A|B) where A:=a(Eym) and B :=a(y).[Dry: M]f(m)
where B transmits the correct message m on channel f whenever the dummy
message (on reception bound to y) can be decrypted (as expressed by the guard
[Dgy:M]). If the equation (vk) (A|B) = (vk) (A| B) holds, then no context is
able to influence the authenticity (more precisely: integrity) of the message m.

Apart from the equational style, cryptographic protocols in the spi calculus
are analyzed by control flow analysis, trace analysis, reachability analysis, and
type systems; they are beyond the scope of this paper.
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Fig. 1. Equivalences

Equivalences. To verify security properties expressed in the equational style, we
need to give an interpretation for the equation symbol. Contertual equivalences—
two terms are related if they behave in the same way in all contexts—are attrac-
tive because the quantification over all contexts directly captures the intuition
of an unknown attacker expressible within the spi calculus [AG99].

The notions of may-testing equivalence and barbed equivalence are the most
prominent contextual equivalences [see the right column of Fig. 1]. Their main
distinction is linear time versus branching time: The former considers the pos-
sibility of passing tests after sequences of computation steps; the latter has a
more refined view, also comparing the derivatives of internal computation. Se-
crecy and authenticity are usually seen as trace-based properties and formulated
in terms of testing equivalence; however, testing is not known to be sufficient for
anonymity or fairness [CS02].

Proof Methods for Contextual Equivalences Although intuitive, the quantifica-
tion over contexts makes direct proofs of contextual equivalences notoriously
difficult. This problem is traditionally dealt with by defining equivalent non-
contextual relations [see the middle column of Fig. 1]. Applying this pattern to
the spi calculus, Boreale, De Nicola, and Pugliese [BDP02] introduced a trace
equivalence corresponding to testing equivalence, as well as an “environment-
sensitive” labeled bisimulation as the counterpart of barbed equivalence.

Because of the practical usefulness of the definition of bisimulations in terms
of co-induction, they are used as proof techniques for trace-based equivalences.
With this goal, and in a style quite different to [BDP02], Abadi and Gordon
proposed framed bisimulation [AG98], that is however incomplete with respect
to barbed equivalence. This was analyzed and remedied by Borgstrom and Nest-
mann, yielding hedged bisimulation [BN02].

Infinite Branching & Symbolic Proof Methods Once we have provided a non-
contextual alternative for our chosen equivalence, we face an inherent problem
with the operational semantics of message-passing process calculi: The possibility
to receive arbitrary messages (like participant B performs along channel a in the
example above) gives rise to an infinite number of “concrete” transitions. Using
a less concrete semantics for process input [HL95, BD96], the substitution of
received messages for input variables never takes place. Instead, an input prefix
produces a single “symbolic” transition, where the input variable is instantiated
lazily, i.e., only when used, and indirectly by collecting the constraints on it that
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are necessary for a transition to take place. This idea was exploited to implement
bisimulation-checking algorithms for the pi calculus [San96, VM94].

Symbolic semantics have also been defined for the limited setting of non-
mobile spi calculi, where no channel-passing is allowed or channels do not even
exist: examples are the works by Huima [Hui99], Boreale [Bor01], Amadio and
Lugiez [ALO00], and Fiore and Abadi [FAO1]. For the full spi calculus, where
complex messages including keys and channel names pose new challenges, the
only symbolic semantics that we are aware of was proposed by Durante et al.
[DSV03]. However, it is rather complicated, mainly since it is tailored to capture
trace semantics. We seek a simpler and more general symbolic semantics, that
should also work well for bisimulation techniques.

Towards Symbolic Bisimulation In this paper, we propose a symbolic bisimula-
tion for the spi calculus. Here, the elements of a bisimulation consist of a process
pair and an environment; the latter captures the knowledge that an attacker has
acquired in previous interactions with the process pair. This considerably com-
plicates the generalization of symbolic bisimulation from pi to spi: (1) we must
keep track of when an attacker has learned some piece of information so that he
can only use it for instantiating inputs taking place later on; (2) the combination
of scope extrusion and complex guards and expressions makes a precise corre-
spondence to concrete semantics challenging; (3) the cryptographic knowledge of
the environment should be represented clearly and compactly; (4) environment
inconsistency, signaling that the environment has noticed a difference between
the supposedly equivalent processes, must be carefully defined. These challenges
are in parts shared with existing work on symbolic trace equivalence [DSV03].
We, however, propose a symbolic bisimulation. For this, hedged bisimulation is a
good starting point since it offers a compact and clear knowledge representation.

Contributions of the Paper We give a general symbolic semantics, not using
auxiliary environments, for the full spi calculus. We then use this semantics to
define the, to our knowledge, first symbolic bisimilarity for any spi calculus.
These tasks are significantly more demanding than a straightforward adaptation
of existing approaches in less complex calculi (see the above remarks). We show
that this bisimulation is sound with respect to its concrete counterpart, but
not complete. We argue that the incompleteness is not problematic for protocol
verification, and propose in general terms how it could be removed.

Summary. In §2; we briefly recall the version of the spi calculus that we are
using. In §3, we compare the standard concrete operational semantics with a
reasonably simple symbolic operational semantics. The latter is used, in §4, as the
foundation for a symbolic “very late” hedged bisimulation, which is then shown
to be sound with respect to concrete hedged bisimulation. In §5, we exhibit the
proof technique on an example. We highlight, in §6, some incompletenesses that
are, however, unproblematic for the security equations that we strive to prove.
Conclusions and discussions on future work can be found in §7.
A long version is available via http://lamp.epfl.ch/~jobo/.
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2 The Spi Calculus

We assume the reader to have some basic familiarity with the notions and termi-
nology of the pi calculus. Extending the pi calculus, the spi calculus also permits
the transmission of complex messages, provided by the addition of primitive con-
structs for symmetric (shared-key) and asymmetric (public/private-key) encryp-
tion (Ex M) and decryption (Dx M), as well as hashing [AG99, Cor03]. In the
long version of this paper, we also have primitive constructs for pairing and pair
splitting, generalizing the possibility of the polyadic w-calculus to send several
items atomically with nesting under encryption.

We build on the same assumptions on the perfection of the underlying cryp-
tographic system as [AG99, BDP02], which we do not repeat here. As in [AG99,
BDP02], and in contrast to [DSV03], we require channels to be names (i.e., not
compound messages). This effectively gives the attacker the possibility to verify
if a message is a name by attempting to transmit on it.

We assume an infinite set A of names. Names are used for channels, variables
and cleartexts of messages. Hashing and public and private keys are denoted by
the operator names op € {H, pub, priv }. Expressions F' are formed arbitrarily
using decryption, encryption and operators; messages M may not contain de-
cryption. Logical formulae ¢ generalize matching with conjunction and negation.
The predicate [ F': N'] tests for whether F evaluates to a plain name. We also have
a (redundant) predicate [ F': M] to check whether the decryptions in a term can
be successfully performed. Process constructs include input, output and guard
prefixes, parallel composition and restriction.

a,bc....k,lmn....xy,z2 names N
M,N :=a | ENM | HM) | pub(M) | priv(M) messages M
F,G :=a | EgF | DgF | H(F) | pub(F) | priv(F) expressions &
6, n=tt | oA | ¢ | [F=G] | [F:N] | [F:M] formulae F

P,Q =0 | F(z).P | F(G).P | ¢P | P+ P | P|P | (va)P processes P

Free and bound names of terms and sets of terms are inductively defined as
expected: a is bound in “(va) P” and z is bound in “F(z).P”. Two processes are
a-equivalent if they can be made equal by conflict-free renaming of bound names.
We identify a-equivalent processes, except during the derivation of transitions.
To treat asymmetric encryption, if F = pub(G) (resp. priv(G)), we define F~*
to be priv(G) (resp. pub(G)) and otherwise we let F~1 = F.

Substitutions ¢ are partial functions [*/,,,....f» /, ] from names z to ex-
pressions F'. Substitutions are applied to processes, expressions, formulae and
actions (see below) in the straightforward way, obeying the usual assumption
that capture of bound names is avoided by implicit a-conversion: for example,
P [F /w] replaces all free occurrences of x in P by F, renaming bound names in P
where needed.

3 Semantics — Concrete and Symbolic

Concrete Semantics The concrete semantics we use is similar to the one used
in [BDP02], apart from that we do not have a let-construct in the language.
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Because of this, input and output forms can contain arbitrary expressions, so
we must make sure that these expressions evaluate to a concrete message or
channel name before performing the transition. For the concrete evaluation of
expressions we use a function e.(-) : £ - MU{L}.

a ifF=a
A EvM if F=ErG ande.(G)=M eM ande.(F)=NeM
FES Y M i F=DpG and eo(G) = ExM € M and e,(F) = N~
op(M) if F = op(F) and op € {H, pub, priv} and e.(F) =M € M
1 if otherwise

For guards we have a predicate e(:), that is defined in the obvious way for
true (tt), conjunction and negation. For the other atomic predicates, we define
e([F=G]) to be true iff e.(F) = e.(G) # L , e([F:N]) iff e.(F) € N and
e([F: M)]) iff ec(F) # L. Note that e([F: M]) iff e([F=F]).

The set of actions p € A is defined by p == F(z) | (vé) FG | 7, where ¢
is a tuple of names. By abuse of notation, we write F' G for (vé) F G when ¢ is
empty. We let bn(F(z)) := {z} and bn((vé) F G) := {&}. Moreover, we define
the channel of a visible action as ch(F(x)) := F and ch((v¢) FG) := F. The
derivation rules for the concrete semantics are the C-rules displayed in Table 1,
plus symmetric variants of (Csum), (CPAR) and (CcoMm).

Symbolic semantics The idea behind the symbolic semantics is to record, without
checking, the necessary conditions for a transition as it is derived. Restrictions
are still handled in the side conditions of the derivation rules, but all other
constraints are simply collected in transition constraints. There are three ma-
jor differences to other symbolic semantics [BD96, HL95], resulting from the
presence of compound messages containing names.

1. We record the freshness of restricted names in the constraint separately,
because of the complex guards and expressions.

2. We must use abstract evaluation to avoid unnecessary scope extrusion while
deferring key correspondence checks.

3. The requirement that channels should be names and messages should be in
M need to be part of the transition constraint.

A symbolic transition is written P (’%.; P’ where y € A. In a transition
vc
constraint (v¢) ¢ we have ¢ € F and ¢ is a tuple of names that are fresh in ¢.
As above, we omit (vé) when ¢ is empty. The symbolic counterpart to concrete
evaluation is abstract evaluation e,(-) : £ — &. Intuitively, it performs all
decryptions in a term without checking that decryption and encryption keys
correspond. Instead, when used in the derivation of a transition, we add this
requirement to the transition constraint.

a if F=aq
| Bempea(@) i F=ErG
F&s G'  if F=DpG and e,(G) =EpG’

De.(ry€a(G) if F =DpG and AF’,G’ such that e,(G) = EpG’
op(e,(F)) if F =op(F) and op € {H, pub, priv }



6 Johannes Borgstrom, Sébastien Briais, Uwe Nestmann

We assume that the bound names of a process are pairwise different and different from
its free names, and do not permit a-renaming during the derivation of a transition.

(Cour) if e([G:N]) and e([F: M])
a(F).P ec(G) ec(F) p
. P4 P
(Cm) com - i elGND) (CGUARD) ———— if e(g)
G(z).P =25 P P L P
a(x) ’ (v&)b M /
P—= P
(Ccom) - Q/ - ? if e([a=0b])
PIQ = we) (P'[V4] 1)
PP PP
(va) P = (va) P PlQ—=P|Q
(vb)e M ,
P P . M /
(CoPEN) e if ¢ # a € n(M) (Csum) =
(va) P 2222, P/ P+QL& P
SouT
( ) é(F) P ea(G) ea(F) P (S) G(z) ea(G)(x)
T GNIALF:M] ’ (G:N]
P G(z) P (vb) G’ F Q'
(SCOM) (vér) 1 (véz) ¢2
PlQ—— wh) (P "] 1Q))
(vbé182) (p1AP2A[G=G"])
PP Pt p
(SGUARD) we) ¢ (SPAR) we) o
/P 122 / P ‘ Q 122 Pl | Q
(ve) (end") (ve) ¢
PT%HP/ Pt P
vé) ¢ . (ve) ¢
SRES if a n(p)Un(eo SsuM) —MM——
( )(Va)P—>(fL)¢ (l/a)P' ) @) ( )P+Q—>(f;¢P'

(vb)GF
-
(ve) ¢
(vab) G F
-
(vé) ¢

Pl
(SOPEN-MSG)

if n(G) #a € n(F)

(va) P P’

p—-*.p
(ve) ¢

(va) P ﬁ (va) P’

(SOPEN-GRD)

if n(p) 7 a€n(p)

Table 1. Concrete and Symbolic Operational Semantics
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Symbolic transitions are defined as the smallest relation generated by the S-rules
of Table 1 plus symmetric variants of (SSUM), (SPAR) and (ScoM). Compared
to the concrete semantics, concrete evaluation is replaced by abstract evalua-
tion in the rules (SouT) and (SIN). When we encounter a guard, then the rule
(SGUARD) simply adds it to the transition constraint. If a bound name occurs
only in the transition constraint then, with (SOPEN-GRD), its scope is not ex-
truded; it remains restricted in the resulting process, and also appears restricted
in the transition constraint. Together with abstract evaluation, this rule prevents
unnecessary scope extrusion, as seen in the following example. This is necessary
to obtain the desired correspondence (Lemma 1).

Ezample 1. Let P := (vb)a(DyEpa).Q for some Q. Concretely, P aq, (vb) Q.

Symbolically we have that P aa (vb) Q, where b is still bound.
(vb) [a: N']A[DyEpa: M]
However, if the definition of (SouT) did not include e,(-), we would have

(vb)@DyEpa Q, where b is extruded.
[a:N]A[DpEpa: M]

Concrete transitions correspond to symbolic transitions with true constraints.

Lemma 1. P& P iff 3¢, ¢ such that P ﬁ P’ and e(9).

PRroOF: By induction on the derivation of the transitions.

4 Bisimulations — Concrete and Symbolic

In the spi calculus, bisimulations must take into account the cryptographic
knowledge of the observing environment—potentially a malicious attacker. To
relate two processes P and @, one usually seeks a bisimulation S such that
ek P S @ for some environment e containing the free names of both processes.
In the following, we define two bisimulations and their respective notions of
environment. Concrete bisimulation is a strong late version of hedged bisimula-
tion as defined in [BN02]. Weak early hedged bisimulation is a variant of framed
bisimulation [AG98] designed to be sound and complete with respect to barbed
equivalence [BDP02]. Symbolic bisimulation is intended to enable automatic
verification, while still being sufficiently complete with respect to the concrete
bisimulation for the purpose of verifying security protocols (c.f. Section 6).

Concrete Bisimulation The environment knowledge is stored in sets of pairs of
messages, called hedges. The first message of a pair contributes to the knowledge
about the first process; likewise the second message is related to the second
process. Hedges evolved from the frame-theory pairs of [AG98] by dropping the
frames. As a compact representation, we always work with irreducible hedges,
where no more decryptions are possible. (Irreducibles are related to the notions
of core in [BDP02] and minimal closure seed in [DSV03].) The set of message
pairs that can be generated using the knowledge of the environment is called its
synthesis. Since we want to use hedges also for the symbolic bisimulations, we
do not a priori exclude pairs of non-message expressions in the hedges.
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Definition 1 (Hedges). A hedge is a subset of £ x £. The synthesis S(h) of
a hedge h is the smallest hedge containing h and satisfying
(Fl,Fg) GS(h) (Gl,Gg) ES(h)

SYN-ENC
( ) (EGlFlvEGQFQ) GS(h)

(F1, Fy) € S(h)
(op(F1),0p(F2)) € S(h)

The irreducibles Z(-) of a hedge are defined as

(syN-oP) op € {H, pub, priv }

Z(h) = A(h)\ ({ (Ec, F1,Ec, ) | (F1, ), (G1,G2) € S(A(R)) }
U{(op(F1),0p(F2) | (Fi, F2) € SCA(R)) A op € { H, pub, priv } })
where the analysis A(h) is the smallest hedge containing h and satisfying

(Eq, F1,Eq, F») € A(h) (G171, Gy e S(A(h))
(F1, Fy) € A(h)

(ANA-DEC)

We write h b Fy « Fy for (Fy, Fy) € S(h). If h is a hedge, we let
Rt = {(Fo, ) | (F1, F2) € b}, mi(h) == {F1 | (F1,F2) € b} and
’/Tg(h) = {FQ | (Fl,FQ) € h}

A concrete environment ce € CE := 2M*M i ¢ a hedge that only contains pairs

of messages, is consistent if it is irreducible and the attacker cannot distinguish
between the messages in 1 (ce) and their counterparts in mo(ce). The attacker
can (1) distinguish names from composite messages, (2) check message equality,
(3) create public and private keys and hashes, and (4) encrypt and (5) decrypt
messages with any key it can create.

Definition 2 (Concrete Consistency). A finite concrete environment ce is
semi-consistent iff whenever (M, Ms) € ce

If My € N then My e N

If (N1, N3) € ce such that My = Ny then My = Ny

If My = op(Ny) where op € {H, pub, priv} then Ny & m1(S(ce))

If My = En, Ny then N1 & w1(S(ce)) or Ny & m1(S(ce))

If My = Ex, N| and N, ™' € m1(S(ce)) then

My = En, N} such that (Ny ™, No™') € S(ce) and (N}, N3y) € S(ce).
6. If (N1, N3) € ce such that My = Nyt then My = Nyt

Grds to do ~

ce is consistent iff both ce and ce* are semi-consistent.

A concrete relation R is a subset of CE x P x P.

R is consistent if ce - P R @ implies that ce is consistent.

A concrete relation R is symmetric if ce - P 'R @ implies ce" F Q R P.
Intuitively, for two processes to be concretely bisimilar under a given concrete

environment every detected transition of one of the processes must be simulated

by a transition of the other process on a corresponding channel such that the

updated environment is consistent.
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Definition 3 (Concrete Bisimulation). A symmetric consistent concrete re-
lation R is a concrete bisimulation if when cet P R Q and P 5 P’ with

— bn(py) Nin(my(ce)) =0 (bound names are fresh)
— ch(ur) € mi(ce) if pp #7 (the transition is detected)

then Q X2 Q' where

1. If yy =7 then uo =7 and ce- P’ R Q'.
2. If p1 = ay(x1) then pe = as(x2) where xo & fn(ma(ce)) and
for all B, My, My with B C N x N consistent and
— m(B)\ fn(M;) =0 (all new names are needed)
— m(B)N (fn(P) U tn(m(ce))) = 0 = m2(B) N (n(Q) U fn(ma(ce)))
(new names are fresh)
— ceUBF My « My (M, and M> are indistinguishable)
we have ceUBU{(ay,a2)} + P M/, | R Q [M2/y,].
3. If py = (vér) ag My then po = (véa) ag Mo where {éa} Nin(ma(ce)) =0 and
I(CBU {(al, 0,2), (Ml,Mg)}) - Pl R Ql.

Concrete bisimilarity, written ~., is the union of all concrete bisimulations.

In the definition above, we check channel correspondence by adding the channels
to the environment. If they do not correspond, the resulting environment will
not be consistent (Definition 2, item 2).

On process output we use I() to construct the new environment after the
transition. This entails applying all decryptions with keys that are known by
the environment, producing the minimal extension of the environment ce with
(My, Ms). This extension may turn out to be inconsistent, signifying that the
environment can distinguish corresponding messages from the two processes.

On process input any input that the environment can construct (i.e., satis-
fying ceU B = M <> Ms) must be considered. This is the main problem for
automating bisimilarity checks, since the set of potential inputs is infinite. We
now define a symbolic bisimulation for the spi-calculus, with the property that
every simulated input action gives rise to only one new process pair.

Symbolic Bisimulation As with concrete bisimulation, we need an environment
to keep track of what an attacker has learned during a bisimulation game. As in
the concrete case, a symbolic environment contains a hedge to hold the initial
knowledge of an environment and the knowledge derived from messages received
from the processes. Moreover, in a second hedge, we store the input variables
that we come across when performing process inputs. Similarly to other symbolic
bisimulations [HL95, BD96], we record the transition constraints accumulated by
the processes. Finally, to know whether an input was performed before or after
the environment learned a given message (e.g., the key of an encrypted message)
the knowledge and the input variables are augmented with timing information.

Ezample 2. This example, inspired by [AG99], illustrates why we need to re-
member the order of received messages. Let P := c(x).(vk) (¢(k).¢(Drz)). Since
the input of x happens before P publishes its private key k, = cannot be equal
to a ciphertext encrypted with k. So, the output ¢(Dgx) can never execute.
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Definition 4 (Symbolic Environments). A symbolic environment
se = (th,tw, (¢1,¢2)) consists of the following three elements.

1. A timed hedge th : € x E — N representing the knowledge of the environment.
2. A timed variable set tw : N x N = N containing earlier input variables.
3. A pair of formulae (¢1,p2) that are the accumulated transition constraints.

The set of finite symbolic environments is denoted SE. We let n;(se) :=
fn(m;(dom(th))) U m;(dom(tw)) U fn(p;) for i € {1,2}. To swap the sides of a
timed hedge we define th* = {(Fy, Fo)—th(Fs, Fy) | (F2, F1) € dom(th)}. We
take a snapshot of a timed hedge as th|; .= {(F,G) — th(F,G) | th(F,G) < t}.

Ezxample 3. A symbolic environment related to Example 2 is se; where
sen := (thy, tw, (@1, @2)) for th, := {(k, k)—n, (Dgz, Dra)—3}, tw := {(z, z)—1}
and ¢1 := ¢o := [Drax: M].

A symbolic environment can be understood as a concise description of a set of
concrete environments, differing only in the instantiations of variables. Here, a
variable instantiation is a pair of substitutions, that are applied to the knowledge
of a symbolic environment. As in the concrete case, we may create some fresh
names (B below) when instantiating variables. This definition of concretization
does not constrain the substitutions or ’fresh’ names, but see Definition 6.

Definition 5 (Concretization). Given B C N X N and substitutions o1, 09
we can concretize a timed hedge th into
CB _ (th) :== T({(ec(Fi01), ec(Fro2)) | (F1, Fy) € dom(th)} U B).

01,02

Note that CE _ (th) € CE if all evaluations are defined.

01,02

Ezample 4. We take thy = {(k, k)—2, (Dgx, Dxz)—3} from Example 3.
If 0y = 0p := [E+%,] then CE%2 (thy) = {(k, k), (a,a)}.

If p1 == po = [%] then CH%a (the) = T({(k, k), (ec(Dya), ec(Dya)), (a,a)}),
which is undefined since e.(Dga) =L.

A symbolic environment does not permit arbitrary variable instantiations. To
begin with, the corresponding concretization must be defined. Furthermore, in
order not to invalidate previous transitions that have taken place, we require the
accumulated transition constraints to hold after variable instantiation. Finally,
if a variable corresponds to an input performed at time ¢, then the message
substituted for the variable must be synthesizable from the knowledge of the
environment at that time, augmented with some fresh names B.

Definition 6 (se-respecting Substitutions). A substitution pair (o1,02) is
called se-respecting with B C N'x N, written seb o1 < p o3 iff

1. dom(o;) = m;(dom(tw)) and e(p;o;) for i € {1,2}.
2. If (F1, F») € dom(th) then e.(F;o;) is defined for i € {1,2}.
8. If (v1,v2) € dom(tw) then CZ . (thlpw (v, 0,)) F 01(v1) = 0a(v2).

4. B is consistent (Definition 2) such that m;(B) Nn;(se) =0 fori € {1,2}
and if (b1,b2) € B then by € fn(range(oy)) or be € fn(range(os)).
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Ezxzample 5. We take se, as defined in Example 3 and let o1 := 09 := [Ek“/z].

If n = 0, then se, F 01 < o9 since ng‘f&i)}(thohw(%w)) =

I({(a7 CL), (kz k)a (eC(Dk’Eka)a eC(DkEk‘a))}) = {(CL, CL), (k7 k)} and
{(a,a),(k,k)} F Exa < Exa.

If n > 1 (k becomes known strictly after x was input) then we do not have
sep, F o1 <+ p oo for any B since we cannot synthesize Eipa before knowing k.

In contrast to the concrete case, there are two different ways for a symbolic envi-
ronment to be inconsistent. (1) If one of the concretizations of the environment
is inconsistent: The attacker can distinguish between the messages received from
the two processes. (2) If there is a concretization such that, after substituting,
one of the accumulated transition constraints holds but the other does not: One
of the processes made a transition that was not simulated by the other.

Definition 7 (Symbolic Consistency). Let se = (th,tw, (¢1,$2)) € SE be a
symbolic environment. se is consistent if for all B, 01,02 we have that

1. set oy —p oy implies that CB , (th) is consistent;

2. (th,tw, (tt, it)) = o1 < p 09 and m;(B) Nin(¢;) =0 fori € {1,2}
implies that e(¢101) iff e(¢202).

The definition of symbolic bisimilarity is similar to the concrete case. To see
if a transition needs to be simulated, we search a concretization under which
the transition takes place concretely and is detected. On input, we simply add
the input variables to the timed variable set. For all transitions, we add the con-
straints to the environment. The consistency of the updated environment implies
that the simulating transition is detected, and that the channels correspond.

A symbolic relation R is a subset of SE x P x P.

R is symmetric if set P R Q implies that (th", tw", (¢2,¢1)) - Q R P.
R is consistent if se is consistent whenever sek P R Q.

Definition 8 (Symbolic Bisimulation). A symmetric consistent symbolic re-
lation R is a symbolic bisimulation if
whenever (th,tw,(¢1,¢$2)) P R Q and P ft—1> P’ such that

| —

(vd1) ¥
— ({d1} Ubn(u1)) Ny (th, tw, (¢1, d2)) = 0 (bound names are fresh)
— there exist 01,09, B with set o1 < p o9 and
e e(1101) (possible)
o ch(u1) € m(CE ,,(th)) if p1 # 7 (detectable)
o m(B)N ({d} Ubn(u) Ufn(P)) =0 (created names are fresh)

then Q@ —2— Q' with T := max(range(th) U range(tw)) where
(vd2) o

1. If py = 7 then py = 7, {da} Nny(se) = 0 and
(th, tw, (1 A, s A b)) - P' R Q.

2. If M1 = Fl(l’l) then M2 = FQ(.’BQ), {dgl‘g} N 1’12(86) = [Z) and
(thU th tw U { (21, 22) — TH+1}, (¢1 A1, d2 Aha)) = PP R Q' where
th' == {(Fy, Fy) +— t | t := th(Fy, Fy) if defined, else t := T+1}.



12 Johannes Borgstrom, Sébastien Briais, Uwe Nestmann

8. If py = (vé1) Fy Gy then po = (vés) Fy Go, {daéa} Nng(se) = 0 and
(thU th tw, (p1 A1, o Atho)) F P’ R Q' where
th' := {F' + T+1 | F’ € Z(dom(th) U {(Fy, ), (G1,G2)})\ dom(th)}.

Symbolic bisimilarity, written ~g, is the union of all symbolic bisimulations.

Theorem 1. Whenever sek P ~5 Q and set o1 «pg 09
with fn(P)N71(B) = 0 = fn(Q)Nma(B), we have that CB _ (th) F Poy ~. Qos.

01,02
PrOOF: To prove this theorem, we must verify two things.

1. Any concrete transition of Po; that must be simulated by Qos under the
concrete environment CUB1 o, (th) has a corresponding symbolic transition of
P that must be simulated by @ under se.

2. If a symbolic transition of P is simulated by ) under se, and has a corre-
sponding concrete transition of Pop that must be simulated by Qos under
Cfl o, (th), then Qoo can simulate the concrete transition. Moreover, the
process pairs and environments after the transition are related by a suitable

extension of (o1, 09).

By this theorem, symbolic bisimilarity is a sound approximation to concrete
bisimilarity and, by transitivity, barbed equivalence. A weak version of symbolic
bisimulation may be defined in the standard fashion.

5 Example

We prove that the equation of the example in §1 holds.

We start with a symbolic environment in which the message m is a vari-
able: We let th := {(a,a) — 0,(f,f) — 0}, tw := {(m,m) — 1} and se :=
(th,tw, (tt, tt)). Note that we give m a later time than e and f, in order to
permit occurrences of a and f in the message.

Proposition 1. set (vk) (A|B) ~s (vk) (A| B)

PROOF: We let gp(y) := [F:N], gF & := [F:N] A[G: M] and 91{273 = gF@) N

gﬁc/\[F: F']. We write pwd(Z) to denote that Z is a tuple of pair-wise different
names. The symmetric closure of the following set is a symbolic bisimulation.

{((th, tw, tt, Ett) :(vk) (A]B), (vk) (A]B)), B

((th, tw, (47557 GTE5™)). (v) (0 | [ DyEgm: MIF{m)), (v) (0 | F(DxExm))).
((thU {(m m) — 2} tw, ( /\gf [Dk/Ek/m /\/l] ZE”" ngk/Ek/m))

(vk) (0 | 0), (vk) (0 | 0)), _

((th, twO{(y, x) = 2}, (Ga(y)> Ja()))> (VE) (A ] [Dry: Ml (m)), (vk) (A] f (D)),
((th U {(Egm, Exm) H3} tw U {(y, ) = 2}, (gagy) A 9", Ga@) A 97F™)),
( )
(
(
(

akm

0 |[Dxy: M]f(m)), (0 | f{Dxz))),

((th U {(Exm, Exm) = 2}, tw, (¢" B, g7F+™)), (0 | B), (0 | B)),

( thU {(Ekm Ekm) = 2} twu{(ya )'_) 3}7(gaEEm Ng Ya(y)s g @ Erm /\ga(w)))v
0 [ [Dry: M]f(m)), (0 | f(Drz))),
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((thU {(Exgm, Exm) — 2, (m, Dyx) — 4}, tw U {(y, z) — 3},
(9% EE™ A gagyy A g7 ™ A [Dry: M, g B™ A goay) A g/ P57), (0] 0), (0 | 0))
| de(a7 f7 m7 y? E? kil) a’nd de(a’ f? m7 ‘r’ k? k/)}

Note that the set itself is infinite, but that this infinity only arises from the
possible different choices of bound names. Effectively, the bisimulation contains
only 7 -2 = 14 process pairs. We only check the element

((th, tw U {(y,2) = 2}, (Ja(y)» Ja(x))), (vE) (A | [Dry: M]f(m)), (vk) (A] f(Dra))).

/

S€

Consistency If s¢' - 01 <p 03 then CZ , (th) = BU{(a,a), (f, f)}, which
is consistent by the consistency of B since {a, f} N (m1(B) U m(B)) = 0.
We also have e(g,(yy01) = e([a:N]) which is true independently of oy, and
€(ga(z)02) = e([a:N]) which is also always true. Thus se¢’ is consistent.

Transition 1 (vk) (A|[Dgy: M]f(m)) WRTEm | [Dry: M]f(m) has to be

ﬁEﬁm,
simulated, since if we let p1 := ps 1= [*n] [%/] then we have that
s¢' b p1 g pe and a € {a} = wl(Cghm(zﬁh)). We simulate it by
— (vk)aErm —
(vk) (A] f(Dgz)) — == 0| f(Dyx).
Transition 2 First we a-rename to avoid clashes with environment names.
(vE') (A|[Dry: M]f(m)) fm (vEk) (A] 0) does not need to

(V&) gF ™ A[Dyry: M]
be simulated: e([Dyo(y): M]) holds iff o(y) = Ex M for some M, but k&’

cannot be in n(range(c)) since it is bound in the transition constraint.

6 Sources of Incompleteness

The following examples show sources of incompleteness of the proposed “very
late” symbolic bisimulation. All these examples start from the same symbolic
environment se := ({(a,a) — 0}, 0, (¢, t¢)). Since se has no variables, it has only
one concretization ce := Cge({(a,a) — 0}) = {(a,a)}.

In general, symbolic bisimulations let us postpone the “instantiation” of input
variables until the moment they are actually used, leading to a stronger relation.
In the pi calculus this was addressed using ¢-decompositions [BD96]. We let

Py :=a(x).(@(a) + [z=ala(a).a(a))
Q1 = a(z).(a{a) + ala).[x=a]ala)).
Proposition 2. cet P ~. Q1 but set Py 5 Q1.

The next example shows that the requirement that the collected transition
guards should be indistinguishable gives rise to some incompleteness, that we
conjecture could be removed by allowing decompositions of the guards. We let

Py :=a(x).ala)
Q2 := a(x).([r=ala(a) | ~[z=a]a(a)).



14 Johannes Borgstrom, Sébastien Briais, Uwe Nestmann

Proposition 3. cetF Py ~¢ Q2 but set Py olg Q.

PROOF: Since an output action of Q2 always has an extra equality or disequality
constraint compared to the output action of P», the resulting symbolic environ-
ment is not consistent. In contrast, concrete bisimulation instantiates the input
at once, killing one of the output branches of Q.

Incompleteness also arises from the fact that we choose not to calculate the
precise conditions for the environment to detect a process action. We let

Ps := a(z).(vk)@(Exz).(vm) @(Eg,am). P} P} :=m(a)
Qs = a(z).(vk)a(Exx).(vm) @(Eg,am).Q5 5= [z=a]m(a).
Proposition 4. cet P3 ~. Q3 but set P3 g Q3.

PRrROOF: The output action of P} is detected iff the first input was equal to a:
Then the first message is the key of the second message. Since this constraint
is not added to the symbolic environment but the explicit equality constraint of
Q% is, we have an inconsistent symbolic environment after the final outputs.

Impact We have seen above that processes that are barbed equivalent but dif-
fer in the placement of guards may not be symbolically bisimilar. However,
we contend that this incompleteness will not affect the verification of secrecy
and authenticity properties of security protocols. For secrecy, we want to check
whether two instances of the protocol with different messages (or symbolic vari-
ables) are bisimilar, so there is no change in the structure of the guards. For
authenticity, we conjecture that the addition of guards in the specification only
triggers the incompleteness if they relate to the observability of process actions
(c.f. Proposition 4), something that should never occur in real-world protocols.

7 Conclusions

Contribution. We have given a general symbolic operational semantics for the
spi calculus, including the rich guard language of [BDP02] and allowing com-
plex keys and public-key cryptography. We also propose the, to our knowledge,
first symbolic notion of bisimilarity for the spi calculus, and prove it a sound
approximation of concrete hedged bisimilarity.

Mechanizing Equivalence Checks. Ultimately, we seek mechanizable (efficiently
computable) ways to perform equivalence checks. Hiittel [Hit02] showed decid-
ability of bisimilarity checking by giving a “brute-force” decision algorithm for
framed bisimulation in a language of only finite processes. However, this algo-
rithm is not practically implementable, generating >> 22" branches for each
input of the Wide-mouthed Frog protocol of [AG99].

Ongoing and Future Work We are currently working on an implementation of
this symbolic bisimilarity with a guard language not including negation; the
crucial point is the infinite quantifications in the definition of environment con-
sistency. As in [Bor01], it turns out to be sufficient to check a finite subset of the
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environment-respecting substitution pairs: the minimal elements of a refinement
preorder. However, the presence of consistency makes for a significant difference
in the refinement relation.

Moreover, the symbolic bisimilarity presented in this paper is a compromise
between the complexity of its definition and the degree of completeness; we have
refined proposals that we conjecture will provide full completeness. We also
conjecture that a slightly simplified version of our symbolic bisimulation could
be used for the applied pi-calculus [AF01]. In this setting, any mechanization
would depend heavily on the chosen message language and equivalence.
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